English
最新文章
当前位置: 首页 > 正文
【Nature Genetics】Convergence and divergence of diploid and tetraploid cotton genomes
来源: 时间:2024-10-30

Jianying Li, Zhenping Liu, Chunyuan You, Zhengyang Qi, Jiaqi You, Corrinne E. Grover, Yuexuan Long, Xianhui Huang, Sifan Lu, Yuejin Wang, Sainan Zhang, Yawen Wang, Ruizhe Bai, Mengke Zhang, Shuangxia Jin, Xinhui Nie, Jonathan F. Wendel, Xianlong Zhang, Maojun Wang

Nature GeneticsPublished: 29 October 2024

Abstract

Polyploidy is an important driving force in speciation and evolution; however, the genomic basis for parallel selection of a particular trait between polyploids and ancestral diploids remains unexplored. Here we construct graph-based pan-genomes for diploid (A2) and allotetraploid (AD1) cotton species, enabled by an assembly of 50 genomes of genetically diverse accessions. We delineate a mosaic genome map of tetraploid cultivars that illustrates genomic contributions from semi-wild forms into modern cultivars. Pan-genome comparisons identify syntenic and hyper-divergent regions of continued variation between diploid and tetraploid cottons, and suggest an ongoing process of sequence evolution potentially linked to the contrasting genome size change in two subgenomes. We highlight 43% of genetic regulatory relationships for gene expression in diploid encompassing sequence divergence after polyploidy, and specifically characterize six underexplored convergent genetic loci contributing to parallel selection of fiber quality. This study offers a framework for pan-genomic dissection of genetic regulatory components underlying parallel selection of desirable traits in organisms.

论文链接:https://www.nature.com/articles/s41588-024-01964-8